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Abstract
We used DNA sequence data from thousands of nuclear loci to characterize the population

structure of endangered tiger salamanders (4mbystoma tigrinum) on Long Island and quantify
the impacts of human development on this species. We uncovered highly genetically structured
populations over an extremely small spatial scale (approximately 40 km?) in an increasingly
human-modified landscape. Geographic distance and the presence of major roads between ponds
are both strong predictors of genetic divergence in this system, which suggests both natural and
anthropogenic factors are responsible for the observed patterns of genetic variation. This study
demonstrates the added value of genomic approaches in molecular ecology, as these patterns
were not apparent in an earlier study of the same system using microsatellite loci. Ponds
exhibited small effective population sizes, and there is a strong correlation between pond surface
area and salamander population size. When combined with the high degree of structuring in this
heavily modified landscape, our study suggests that these endangered amphib'ians require
management at the individual pond, or pond cluster, landscape level. Particular efforts should be
made to preserve large vernal pools, which harbor greater genetic diversity, and their
surrounding upland habitat. Contiguous upland landscapes between ponds that encourage natural
metapopulation dynamics and demographic rescue from future local extirpations should also be
protected.

Introduction
Genetic, and, increasingly, genomic analyses constitute a powerful tool kit for understanding

how species move through landscapes, particularly for secretive species such as reptiles and
amphibians (Shaffer ef al. 2015). When studying endangered species, we are often concerned
with the degree to which human activity has impacted the size and movement of populations.

This human interference often occurs at very small spatial scales compared to species range



sizes—for example, building a road between two nearby populations that exchange migrants
regularly—as well as short temporal scales, given that humans often have been impacting
wildlife populations for tens or hundreds of generations. As conservation and resource managers
and as population biologists, we are often less interested in larger scale effects across thousands
of kilometers of a species range than we are about dynamics across a few kilometers on specific
landscapes. This is especially true for low-vagility species like amphibians, reptiles, small
mammals, and many invertebrates that often move a kilometer or less per generation (Blaustein
et al. 1994). For such taxa, the genetic relationships between distant populations are often a
result of ancient demographic processes, but interruption of gene flow at an extremely fine
spatial scale is the defining component of human impacts. For protected or endangered species,
understanding the extent to which human activities at the finest spatial scales alter demographic
and population processes is the key to effective management.

Discerning gene flow and differentiation at very fine spatial scales is challenging because
populations located proximately to one another tend to be very closely related (Wright 1943).
Furthermore, the ability to detect differentiation between genetically very closely related
populations is limited by the number of samples and genetic loci assayed (Patterson ef al. 2006).
Until now, nearly all population genetic studies of amphibians have been limited to
mitochondrial DNA or a small number of nuclear loci (typically microsatellites). This is due at
least in part to the large, highly repetitive genomes of many amphibians that make it difficult to
generate genomic resources (Licht & Lowcock 1991; Sun ef al. 2012). While this is slowly
changing as genomic technologies are beginning to be being applied to amphibians (Keinath ez
al. 2016; McCartney-Melstad et al. 2016; Portik ef al. 2016; Newman & Austin 2016), most

systems that could benefit from genomic scale data remain unexplored. Custom target



enrichment assays built from transcriptomic resources are promising intermediate solutions that
bridge the gap between microsatellites and whole genome sequencing while allowing for
flexibility in which genomic regions to study (McCartney-Melstad ef al. 2016; Portik et al.
2016).

One interesting case study where the added resolution of genomic-scale datasets may make a
difference is for tiger salamanders (Ambystoma tigrinum) on Long Island, a New York-listed
endangered species (6 CRR-NY 182.5) where fine-scale population dynamics are critical for
management decision making. 4. tigrinum was historically found in scattered localities across
New York at the northern limits of its range in the eastern US, including Albany County,
Rockland County, and across Long Island. However, the species has experienced dramatic
declines in the region, and it is currently restricted to Suffolk and Nassau Counties, primarily in
central Long Island (Bishop 1941; Stewart & Rossi 1981). In recent years, surveyors have
witnessed a decrease in the observed number of individuals, with approximately 90 breeding
ponds remaining (New York State Department of Environmental Conservation 2015).

The species suffers a range of threats including disease, predation, pollution, invasive species,
and climate change-induced sea level rise. Development is not only a source of habitat loss, but
also creates direct mortality risk from road kill, degrades pond viability from pollutants, and
creates barriers to migration and population fragmentation (Titus ef al. 2014). Telemetry studies
have documented individuals traveling at least 500 meters from breeding ponds, and confirmed
that individuals tend to avoid paved roads, dirt roads, and grassy areas (Madison & Farrand
1998). Movements, which are often studied during the annual breeding migration, are generally
oriented towards upland refugia in their preferred habitat of sandy soil, pine barren habitat

(Madison & Farrand 1998; Titus ef al. 2014).



Prior genetic work using twelve microsatellite loci recovered two distinct populations of 4.
tigrinum across 17 ponds spanning 50 km on Long Island, both of which exhibited low diversity
and high relatedness among ponds (Titus et al. 2014). The authors attributed the low diversity
and high relatedness to post-glacial colonization from North Carolina (Church ef al. 2003) and
relatively frequent migration of salamanders between ponds. Their primary conclusion was that
Long Island and New Jersey tiger salamanders were genetically uniform within each state, but
were differentiated between states due to geographic isolation and range fragmentation.

Most of the ponds analyzed by Titus et al. (2014) on Long Island were fewer than six
kilometers apart, and their analyses and conclusions required genetic markers capable of
discerning fine scale ecological processes. However, the microsatellite loci used showed
relatively low diversity (1-13 alleles per locus across ponds and an average of 1-3 alleles per
locus within ponds), and therefore were not the most imformative (Reyes-Valdés 2013). This
leaves open the real possibility that these markers lacked the statistical power to detect real
patterns of landscape-driven differentiation. This was not a fault of the Titus ef al. (2014) work,
but rather a reflection of the tools available when their work was undertaken.

To explore recent anthropogenic impacts on this endangered, fragmented set of populations
further, we applied a genomic target capture approach with 5,237 random nuclear exons to ponds
in the same system to quantify the degree to which ponds are isolated from one another and
whether or not major roads act as barriers to dispersal for extant populations of Ambystoma
tigrinum on Long Island. We sought to answer three separate questions: 1) To what degree are
ponds genetically connected to or differentiated from one another?, 2) what are the effective
population sizes of ponds in the system, are they related to pond area, and how do these values

compare to other amphibians?, and 3) what are the effects of roads on connectivity between



ponds in the system? The increased resolution recovered from the genomic dataset collected here
demonstrates the increased power and utility of genomic-scale data for population genetics of
threatened species, and highlights the fundamentally different conclusions for appropriate
management interventions that such data can provide.

Methods

Sampling and Data Generation

Larval tissue samples were collected in Suffolk County over three consecutive breeding
seasons between 2013 and 2015 using seines and dipnets. We timed our sampling to occur in the
late spring when larvae were large enough to sample non-destructively with small tail clips
(Polich ef al. 2013). Tail tips were placed in 95% ethanol within 30 seconds of clipping, larvae
were immediately released at the site of capture, and tail tips were stored at -80C until use. A
hand-held GPS unit was used to locate ponds in the field, and final spatial coordinates and areas
of ponds were taken from tracings of Google Earth images from March 2007. We sampled larvae
from multiple sites at each pond to randomly sample the genetic variation present. DNA was
extracted from samples using a salt extraction protocol (Sambrook & Russell 2001), diluted to
100 ng/uL, and sheared for 28 cycles (30s on, 90s off) using the “high” setting on a Bioruptor
NGS (Diagenode). After shearing, samples were dual-end size selected to approximately 300-
500bp using 0.8X-1.0X SPRI beads (Rohland & Reich 2012).

Libraries were prepared with 419-2000 ng of starting input DNA using Kapa LTP library prep
kit half reactions (Kapa Biosystems, Wilmington MA). Libraries were dual-indexed using the
iTru system (Glenn et al. 2016), which adds 8bp indices to the adapters of both ends of library
fragments for demultiplexing. Next, 500ng of each library were combined into pools of 8
(4,000ng total input DNA) and enriched using a MYcroarray (Ann Arbor, MI) biotinylated RNA

probe set designed from 5,237 exons from unique genes from the California tiger salamander



genome (McCartney-Melstad et al. 2016). Given the relatively close phylogenetic relationships
of all members of the tiger salamander complex (Shaffer & McKnight 1996; O’Neill et al. 2013),
we predicted that most of the probes would also capture the eastern tiger salamander homolog. A
total of 30,000 ng of cot-1 prepared from Ambystoma californiense was used for each capture
reaction to block repetitive DNA from hybridizing with probes or captured fragments. Probes
were hybridized for 30 hours at 60C, bound to streptavidin-coated beads, and washed four times
with wash buffer 2.2 (MYcroarray). Enriched libraries were then amplified on-bead with 14
cycles of PCR, cleaned using 1.0X SPRI beads, and sequenced on three 150bp PE lanes on an
Illumina HiSeq 4000.

Reference Assembly
We built a reference assembly for read mapping and SNP calling using the Assembly by

Reduced Complexity (ARC) pipeline (Hunter et al. 2015). To do this, the reads from the 10
samples that received the greatest number of reads were pooled and mapped to the 5,237 A4.
californiense targets across which capture probes were tiled using bowtie2 v.2.2.6 (Langmead &
Salzberg 2012). Pools of reads mapping to each one of these targets were independently
assembled using SPAdes v.3.8.2 (Bankevich ef al. 2012), and the contigs assembled for each
target then replaced their respective targets and another round of mapping was performed to
these contigs. This process was repeated for 10 iterations to extend assembled targets several
hundred bp in both directions from their central probe-tiled regions. Reciprocal best blast hits
(RBBHs) were then found to represent each target locus using blast+ 2.2.30 (Camacho et al.
2009). The set of RBBHs was then blasted against itself to find similar regions among targets,
which may be indicative of chimeric assemblies. Regions within each RBBH that were found to

be similar to other RBBHs were trimmed to the ends of the RBBH contigs.



SNP Calling and Genotyping
Reads for all samples were trimmed to 150bp (if the 151* base was reported by the

sequencing facility) and adapters were trimmed using skewer 0.1.127 (Jiang et al. 2014). These
trimmed reads were then mapped to the reference assembly using BWA-mem 0.7.15 (Li 2013).

Read group information was added to the aligned reads and PCR duplicates were marked using

picard tools v2.0.1 (https://broadinstitute.github.io/picard/).

SNP calling and genotyping was performed according to GATK best practices (DePristo ef al.
2011; Van der Auwera et al. 2013). First, a set of high-quality reference SNPs was generated to
assess and recalibrate base quality scores within each sample. HaplotypeCaller from GATK
nightly-2016-11-21-g69¢703d (McKenna et al. 2010) was run separately on each sample in
GVCF mode followed by joint genotyping with GenotypeGV CFs. Then, any SNP that met any
of the following criteria were removed from the reference set: QD < 2.0, MQ <40.0, FS > 60.0,
MQRankSum < -12.5, ReadPosRankSum < -8.0, QUAL < 100. Similarly, any indel that failed
any of the following criteria were also removed from the reference set: QD <2.0, SOR > 10.0,
FS > 60.0, ReadPosRankSum < -8.0, QUAL < 100. Base quality score recalibration was then
performed at the lane level (three different platform units among all of the read groups) using
GATK.

HaplotypeCaller in GATK was then used with recalibrated reads to generate sample-level
GVCF files that were jointly genotyped using GATK’s GenotypeGVCFs function. The same
hard filters outlined above were then applied to the resulting VCF files, except that all SNPs with
QUAL values above 30 (instead of 100) were kept. Genotype calls with phred-scaled quality
scores under 20 (1 in 100 chance of being incorrect) were set to “missing” data, and SNPs with
greater than 50% missing data were removed. Samples with missing data rates greater than 30%

were also removed.



Given the extremely large genomes of ambystomatid salamanders (roughly 30GB) (Licht &
Lowcock 1991; Keinath ef al. 2015), we were concerned about the possibility of including
duplicated paralogous loci in our analyses. We attempted to correct for this by filtering out loci
that contained excessive heterozygosity, as fixed differences between true paralogs interpreted as
homologs will typically appear as variable sites that are always heterozygous. To do this,
VCFtools v.0.1.15 was used to calculate p-values for heterozygote excess for every SNP
(Wigginton et al. 2005; Danecek et al. 2011). Target regions that contained at least one SNP with
an excess heterozygote p-value below 0.001 were removed from the analysis. A set of SNPs was
then generated by randomly choosing a single SNP from each qualifying target region (those
targets that did not contain any excessively heterozygous SNPs). This dataset with a single SNP
taken from each target region is referred to hereafter as the “linkage-pruned” dataset.

Population Genetic Analysis S
The presence of isolation by distance (IBD)J—the relationship between geographic and genetic

distance—was tested at both the individual and pond (population) levels. Individual genetic
similarity was calculated as the percentage of SNPs that were identical-by-state using SNPRelate
v1.6.4 (Zheng et al. 2012). These values were regressed on geographic distance and the
significance of the correlation between genetic distance and geographic distance was tested using
a simple Mantel test with 999,999 permutations in the R package vegan 2.4-0 (Mantel 1967,
Oksanen et al. 2016). At the pond level, Fst/(1-Fst) (Slatkin 1995) was calculated using
SNPRelate v1.6.4 and regressed on geographic distance to estimate the slope of isolation by
distance. Rousset (1997) recommends regressing Fst/(1-Fst) on the logarithm of geographic
distance in the case of two-dimensional habitats or non-transformed geographic distance in the
case of one-dimensional habitats. Since the sampling area for this study is very narrow and is

over three times longer than it is wide (approximately 15.5 km x 4.5 km), it is unclear whether it



is more appropriate to treat the study area as linear or two dimensional, and regressions and
Mantel tests are reported for both raw and log-transformed geo graphic distances. Fst values were
also calculated using Arlequin v3.5.2.2 (Excoffier & Lischer 2010) to determine significance p-
values using 100,172 permutations of the data. P-values from Arlequin were adjusted for
multiple testing using the Benjamini-Yekutieli correction implemented in base R (Benjamini &
Yekutieli 2001). For individual-based analyses, logarithms of geographic distances were set to a
minimum value of 0.

We were interested in characterizing the level of genetic diversity present in tiger salamanders
on Long Island. To estimate genetic diversity we determined per-base pair Watterson’s 0, an
estimator that characterizes the level of genetic diversity in populations based on the number of
segregating sites per base pair sequenced (Watterson 1975). We calculated 6 for each pond with
samples pooled across years. As a basis of comparison, a population sample of 15 California
tiger salamanders (4. californiense) from a single pond in Great Valley Grasslands State Park,
California (McCartney-Melstad and Shaffer, unpublished data) was genotyped under similar
filtering parameters for the same set of loci, and 8 was estimated for this group in the same way.

The linkage-pruned dataset was visualized using principal components analysis (PCA) in the
R package SNPRelate v1.6.4 (Zheng et al. 2012). The first eight principal components were
plotted with letters corresponding to the collection sites of samples. The proportion of the
variance explained by each principal component was also obtained using SNPRelate v1.6.4.

To estimate the number of distinct population clusters in the data, ADMIXTURE v1.3.0 was
run using the linkage-pruned dataset containing all samples from all ponds across all three years
of sampling for K=1 to K=30 with ten different random number seeds (Alexander et al. 2009).

Each replicate was subjected to 100-fold cross validation, and CV errors were used to choose a



“reasonable” set of K values. If the standard deviation of CV values for any K value overlapped
with the standard deviation of the best-scoring K value, it was included as a reasonable value for
K.

Effective population sizes (Ne) for each pond were estimated using the linkage disequilibrium
(LD) method in NeEstimator v2.01 with a minor allele frequency cutoff of 0.05 (Hill 1981; Do et
al. 2014). Estimates were calculated for all cohorts (a given pond in a given year), and, when
more than one year of sampling was conducted for a pond, Ne was also calculated for the pooled
sample of either two or three cohorts. LD-based estimates of effective population size from
single cohorts represent the harmonic mean between the effective number of breeders (Nb) and
the true effective population size (Ne) (Waples ef al. 2016). Alternatively, as the number of
pooled cohorts approaches the generation length (the average age of parents for a cohort), LD-
based estimators should approach the true Ne (Waples & Do 2010; Waples er al. 2014).

Effective population size estimates using the LD method can be downwardly biased for
multiple reasons. First, estimates may be biased when many loci are used due to physical linkage
among loci, given that the method assumes the loci being used are unlinked (Waples et al. 2016).
This effect is predictable, however, and can be corrected if the number of chromosomes or total
linkage map length is known. Estimates of linkage map length for the closely related axolotl,
Ambystoma mexicanum, are known, and this number (4200cm) was used to correct estimates of
effective population size for dense locus sampling by dividing them by 0.9170819 (which is
equal to -0.910 + 0.219 x In(4200)) (Voss et al. 2011; Waples er al. 2016).

LD based estimates of effective population size can also be downwardly biased when
analyzing mixed cohorts in iteroparous species such as 4. tigrinum, although this bias appears to

decrease as the number of sampled cohorts approaches the generation length of the species



(Waples & Do 2010; Waples e al. 2014). Therefore, single-cohort estimates of Ne were further
corrected by dividing dense-locus adjusted estimates by 0.8781801, the product of two equations
from Table 3 of Waples et al. (2014) that use the ratio of adult lifespan (estimated at 7 years for
the closely related 4. californiense) to age at maturity (4 years, also in 4. californiense)
(Trenham et al. 2000) to compensate for the downward bias introduced by iteroparity: (1.103-
0.245 * log(7/4)) * (0.485+0.758 x log(7/4)). For ponds in which multiple years of sampling
were conducted, we report both pooled-cohort estimates (corrected for dense locus sampling)
and per-cohort estimates (corrected both for dense locus sampling and single-cohort sampling).
We used linear regression to visualize the relationship between pond area (as traced from Google
Earth images) and effective population size, using multi-year estimates of Ne when available.

Impact of Roads
We were interested in assessing to what degree human habitat modifications have restricted

movement of this species, and whether or not human activity has contributed to the observed
patterns of population structure. To explore this, we created a matrix that indicated whether or
not pairs of ponds were separated by a major road (New York State Route 25, Suffolk CR 46, or
Interstate 495, see Figure 6). This matrix was included as a predictor variable for genetic distance
in linear regression and was tested for correlations to genetic distance (while controlling for
geographic distance) using a partial Mantel test with vegan v2.4-0 in R (Mantel 1967; Smouse et
al. 1986; R Core Team 2015; Oksanen ef al. 2016).

Results
Sampling: A total of 283 salamanders were genotyped from 17 ponds spread over an

approximately 40 km? area (Figure 6, Table 4). More than 1.9 billion 150-bp sequencing reads
were generated from three Illumina HiSeq 4000 lanes across these samples (mean=6.8 million

reads/sample, min=1.8 million reads, max=10.9 million reads).



Reference assembly: The ten samples that received the most sequencing reads were pooled to
generate a de novo reference assembly, for a total of 66.9 million merged and paired-end
sequencing reads (11.7 billion total bp). Assembly of target regions with the ARC assembler
produced a set of 74,109 contigs (47.5 million bp) from which 5,057 reciprocal best blast hits
were recovered (6.7 million bp). After blasting these contigs against themselves, trimming self-
complementary regions to the ends of contigs, and re-determining reciprocal best blast hits, a 6.6
million bp assembly with 5,050 target regions (96.4% of the originally targeted regions) was
recovered for mapping reads and calling SNPs.

SNP Calling and Genotyping: An average of 29.27% of raw reads mapped to the reference
assembly using BWA-mem across all 283 samples (sd=2.47%, min=20.33%, max=34.30%).
After removing PCR duplicates (read pairs that map to the exact same position on the reference,
indicating that they may be PCR amplicons from the same molecule), an average of 17.03%
unique reads mapped to the reference (sd=2.47%, min=8.51%, max=24.59%). After joint
genotyping, a total of 82,005 raw SNPs were recovered across 4,400 target regions. After
applying hard filters to SNP loci, setting the minimum genotype call quality to 20, discarding
variants genotyped in less than 50% of all samples, and removing the one sample with a missing
data rate greater than 30%, a total of 21,998 biallelic SNPs were retained across 3,631 target
regions. Tests for Hardy Weinberg equilibrium revealed 533 targets contained at least one SNP
with clear (p<0.001) heterozygote excess, which is consistent with (though not definite evidence
of) the presence of an unknown paralogous copy of this gene in the genome. After removing
these target regions from the analysis, a total of 12,924 biallelic SNPs remained across 3,098

target regions. The final matrix containing 282 individuals had a mean missing data rate of 7.7%



(max=27.8%, min=1.8%, sd=4.5%). The linkage-pruned dataset contained one random biallelic
SNP from each final target, for a total of 3,098 variants.

Genetic variation within cohorts: Values of Watterson’s 8 for ponds ranged from 3.26x10™ to
5.77x10™* (Table 4), and was 3.19 x10™ after pooling the 282 samples from all ponds together for
a single estimate of 0. The comparative sample of 15 4. californiense from a pond in Merced
County, CA had a 6 value of 7.09x10™, which was higher than each of the values calculated for
ponds in Long Island 4. tigrinum. This suggests that genetic diversity is lower for 4. tigrinum in
Long Island than it is for 4. californiense in Great Valley Grasslands State Park, CA, and is in
keeping with the low estimates of variation found by Titus et al. (2014).

Isolation by Distance (IBD): IBD was apparent at both the individual and pond level (Figures
7 and 8, Table 5). Regressions of individual identity-by-state on both raw and log-transformed
geographic distances yielded negative relationships with p-values below 2x107° (Figure 7).
Adjusted R values were higher for log-transformed distances when comparing pairwise
individual genetic relationships and geographic distances (0.2861 vs. 0.1764). Similarly,
regression coefficients were positive and highly significant when testing for the relationship
between pairwise Fst of ponds and raw and log-transformed geographic distances (Figure 8, p <
2.6x10"%and p <4.12x10™" for raw and log-transformed distances, respectively). Unlike the
individual-based measure, the pond-based model with raw geographic distances fit the data
better (R*=0.39) than log-transformed geographic distances (R*=0.27). Testing the significance
of isolation by distance using regression coefficient p-values is inappropriate because many of
the pairwise observations are not independent. Therefore, simple Mantel tests were used to test
the significance of correlations between pond/individual genetic and raw/log-transformed

geographic distances, all of which yielded p-values lower than 0.000011 (Table 5). This indicates



that there is a significant relationship between geographic and genetic distance, even at the

S

extremely fine scale studied here.
\

Pairwise Fst values between ponds ranged from 0.005 to 0.207 (136 comparisons,

median=0.064, sd=0.042, Table 6). Using Benjimini-Yekutieli (BY)-corrected p-values, 118 out
of 136 of these pairwise comparisons were significantly different from 0. Of the 18 non-
significant pairwise comparisons, 16 were from pond L, which contained only a single sample
and therefore had extremely low power. Many of the highest Fst values are from pairwise
comparisons containing ponds A or Q. These ponds are both outliers separated by greater
geographic distances and by major roads from all other ponds (Figure 6).

Principal Component Analysis.: The first eight principal components (PCs) are shown as
pairwise plots in Figure 9. In all PC graphs, samples are coded by letters representing the ponds
from which they were collected (Figure 6). PC1 groups samples from pond A to the exclusion of
the other samples, while PC 2 does the same for samples from ponds E, F, and G. PC 3 separates
samples from ponds B, C, and D from the other ponds (especially pond N), and PC4 appears to
be an axis of variation between ponds J and Q (which is also apparent in PC5). Finally, PCs 6, 7,
and 8 correspond to axes that differentiate ponds N, P, and Q, along with some samples from
ponds A and J. Overall, clustering of single ponds and small groups of closely adjacent ponds is
quite apparent, which indicates the presence of easily detectable population structure with the
genomic data that we have collected in this study.

Population Clustering: The value of K in ADMIXTURE with the lowest mean CV error was
K=12. Four other K values (9, 10, 11, and 13) had CV error standard deviations that overlapped
with K=12 (Figure 10). Admixture proportions for K=9 through K=13 are shown in Figure 11,

and are split by both pond and sampling year (Glasbey et al. 2007). Results from ADMIXTURE



analyses corroborated the qualitative patterns observed in the PCA. First, pond A generally
formed one to three clusters to the exclusion of all other ponds (as recapitulated in PCs 1, 6, and
8). Ponds B, C, and D form a single cluster to the exclusion of other ponds (as also seen in PC 3).
Similarly, ponds E and G form a unique cluster at K=9 (corresponding to PC 2), but are
separated into their own private clusters at K=10 through K=13. Pond F, geographically
separated from its closest neighbors (ponds E and G) by NY State Route 25, appears strongly
admixed at K=9 through K=12, and receives its own cluster at K=13. Ponds H, I, J, K, L, and M
appear to be strongly associated across all K values (though ponds I, L, and M appear highly
admixed at these K values), with the exception of one year of sampling in pond J (2014) that
produced a group of animals that formed their own cluster. Pond N appears quite distinct across
all K values (which can also be seen on PCs 3-8). Pond O appears highly admixed across all K
values, but tends to share a considerable admixture component with the cluster formed by pond P
(and pond Q for K=9 through K=11). At K=12 and K=13, pond Q forms its own strong cluster to
the exclusion of all other ponds, a pattern that is also quite apparent in PC5.

Ejffective Population Size: Estimates of effective population size ranged from 10.3 for pond N
to 135.0 for pond K (Table 4). For ponds with multiple years of sampling, single-cohort
estimates were generally close to those for pooled-cohort, with the exception of pond O, which
had a pooled-cohort estimate of 68.8 and a 2013-cohort estimate of 17,689. This single-cohort
estimate was extremely sensitive to the minor allele frequency cutoff—changing the threshold to
0.10 from 0.05 lowered the estimate to less than 600. The 95% confidence interval was also
extremely wide for this cohort estimate, ranging from 953.0 to Infinite/incalculable. The surface
area of ponds was strongly correlated with effective population size estimates (p=0.00122,

R?=0.5619, Figure 12). The number of samples included in the calculation of Ne was not



correlated with the resulting Ne estimate (linear regression p=0.513, adj R*=-0.0438),
suggesting that sample size per se was not a driver of Ne estimates.

Roads as Barriers to Dispersal: Roads appear to play a strong role in structuring among-pond

genetic divergence in Long Island tiger salamanders. Specifically, linear regression supports
R \“M

roads as an explanatory factor in pairwise Fst values between ponds, as adding this term

e

increased the adjusted R of models including onfy geographic distance from 0.39 to 0.68 (with
both terms highly significant). This is apparent from visualizing the distances, as a distinct
upwards shift in genetic distance is apparent for pairwise comparisons separated by major roads
(Figure 13). Similarly, partial Mantel tests recovered strong and highly significant correlations
between genetic distance and being separated (or not) by major roads after controlling for

geographic distance (p=0.000608, Mantel R*=0.48). This suggests that dispersal may be limited

across major roads, and that human activity has contributed to isolation of ponds in this relatively

highly developed region.
Discu;;i:;;’mwwm

Population structure is difficult to detect and quantify accurately in subtly differentiated
populations, and populations in close geographic proximity tend to be subtly differentiated
(Wright 1943). In conservation genetics, however, we are often interested in understanding
limitations in gene flow at the temporal and spatial scales at which humans impact populations.
Furthermore, as the number of generations over which humans have affected most populations is
usually relatively small, many cases of human-induced structure will be difficult to detect with
conventional genetic datasets.

Several amphibian studies have attempted to quantify spatial genetic structure of populations

at very fine spatial scales. Jehle et al. (2005) found evidence of pond clustering in Triturus newts

over a 26.5 km” landscape using a hierarchical Bayesian clustering algorithm (Corander et al.



2003), although ponds did not cluster cleanly in STRUCTURE analyses (Pritchard et al. 2000).
Hitchings and Beebee (1997) used allozyme data in common frogs in the UK and found evidence
for significant structuring over a few kilometers in urbanized environments, but not in rural
environments, suggesting that human development was acting to isolate ponds from one another
in this system. Similarly, Lampert et al. (2003) recovered significant isolation by distance over
roughly 8km between ponds in Tungara frogs (Physalaemus pustulosus), although 51 of 64
pairwise Fst values on the same side of the 100m-wide Chagres River were non-significant, and
no population clustering methods were attempted. Conversely, Newman and Squire (2001)
recovered significant differentiation and isolation by distance in wood frogs (Rana sylvatica)
ponds separated by roughly 20km but could not genetically differentiate ponds at closer
distances. Lampert ef al. (2003) attributed the differences in discriminating power between these
two studies to the low levels of diversity in microsatellite loci for wood frogs. Zamudio and
Wieczorek (2007) found evidence for two genetic clusters of Ambystoma maculatum from 29
ponds spread over 1272km”in upstate New York, but little support for substructuring among
ponds within each cluster. A number of other studies have found strong support for population
structure among breeding ponds of amphibians in small landscapes using microsatellite loci
(Wang et al. 2009, 2011, Wang 2009b, 2012; Savage et al. 2010). Conversely, several amphibian
studies using microsatellites have failed to find significant genetic differentiation among ponds
for pond-breeding amphibians (Coster et al. 2015; Furman et al. 2016), while others have found
evidence of isolation by distance and limited clustering (Sotiropoulos et al. 2013; Peterman et al.
2015).

These studies illustrate that, in amphibians, genetic differentiation is sometimes detectable at

very fine spatial scales, and sometimes it is not. This may hinge largely on the variability of the



markers studied, which itself is shaped by deeper-time demographic processes such as
bottlenecks and range expansions (Watterson 1984; Slatkin 1993). While microsatellite loci have
been extremely valuable for conservation genetics, a panel of 20 microsatellites (which is
towards the high end employed by most studies) has been shown in one instance to be
approximately as effective for estimating genetic relationships as 50 SNP loci (Santure et al.
2010). While it is laborious to increase the number of microsatellite loci above the 20 or so that
are typically used in conservation genetics, it is very straightforward to scale the number of SNPs
assayed into the thousands or tens of thousands, which greatly increases our ability to distinguish
barriers to gene flow that are subtle or have only been operating for a small number of
generations (Patterson et al. 2006; Anderson et al. 2010). As genomic-scale datasets become
comparable with microsatellites in terms of cost and feasibility, the added resolution from
thousands of loci will give a particular boost to population genetic studies in systems with low
genetic diversity, and will open entire new classes of analyses to both low- and high-diversity
systems.

While a lack of statistical power is one reason why population structure may not be detected
in pond-breeding amphibians, another possibility is that, even in low-vagility species, ponds in
some systems are truly unstructured, and that failing to recover population structure reflects a
biological reality of panmixia across these ponds. Differentiating between low resolving power
and true panmixia is critical for conservation and management decision makers. Multiple studies
of the same systems with both conventional and genomic datasets can help clarify whether the
null hypothesis of population differentiation and strong isolation by distance is a general rule for

pond-breeding amphibians, or whether such rules may be habitat or lineage-specific.



The current study is among the first to use thousands of nuclear loci across hundreds of
individuals in a large-genome amphibian, and represents an opportunity to compare results
between the two genetic approaches in the same system. While little genetic clustering was
apparent in the microsatellite loci analyzed by Titus et al. (2014), our dataset of thousands of
nuclear SNPs reveals clear population genetic structuring among breeding ponds of Ambystoma
tigrinum on Long Island. The major genetic patterns in our data are readily apparent in both
ADMIXTURE and PCA results. Genetic structuring of ponds generally shows consistent results
across years (Figure 11), with two exceptions. First, samples from 2013 in Pond A were
classified consistently as a unique population that is admixed with the Pond A lineages sampled
in 2014 and 2015. Second, some of the samples from 2014 in Pond J appear to belong to a
unique lineage that was not sampled in any other ponds or years. Aside from these two results,
consistency between sampling years in the different ponds suggests that the observed patterns of
genetic structure are likely driven by geography and not year-to-year variation.

Species with low genetic diversity require collecting data from a greater number of genetic
loci to detect population structure (Patterson et al. 2006). One cause of low genetic diversity is a
range expansion. Church et al. (2003) analyzed Ambystoma tigrinum mitochondrial DNA and
determined that New York was likely recolonized by salamanders from Pleistocene refugia in
North Carolina. This was corroborated by Titus et al. (2014), who found low genetic diversity in
microsatellite loci in New Jersey and Long Island tiger salamanders. To try to understand
whether this low genetic diversity led to the apparent differences between microsatellite and
target capture datasets, we compared estimates of genetic diversity from Long Island tiger
salamanders to other amphibian systems. Crawford (2003) used a single gene (c-myc) to estimate

0 in populations of Eleutherodactylus frogs in Costa Rica and Panama and obtained values



ranging from 0.00080 to 0.01148 (excluding one population that was fixed for a single haplotype
across eight diploid individuals). Weisrock et al. (2006) estimated 6 at eight nuclear loci from
217 Ambystoma ordinarium (a member of the Ambystoma tigrinum complex) larvae from across
the geographic range of the species (spanning roughly 200km) and obtained an average 0 of
0.00208 across loci (min=0.0006, max=0.0034). Similarly, Nadachowska and Babik (2009)
sequenced eight nuclear loci for 20 different populations of smooth newt subspecies in Turkey
(Lissotriton vulgaris kosswigi and Lissotriton vulgaris vulgaris). They calculated 0 for each
population and, after averaging across loci, recovered population estimates ranging from 0.0019
to 0.0081. Finally, we calculated 8 as 0.000709 in a collection of 15 4. californiense from
Merced County, CA. This calculation was performed for a collection of individuals across the
same set of nuclear loci presented here, so it is the most direct comparison available. All of these
values of 0 are greater than the largest value obtained in Long Island tiger salamander ponds
(0.000577, mean=0.000427), which indicates that these populations likely do have lower genetic
diversity than is normally seen in amphibians.

Breeding ponds that we examined generally exhibited small effective population sizes (<
100), consistent with results found for many other amphibian species (Schmeller & Merili 2007;
Phillipsen ef al. 2011; McCartney-Melstad & Shaffer 2015). Our estimates (mean=36.9) are
larger than, but of the same magnitude as microsatellite-based estimates performed by Titus ez al.
(2014) using the sibship method (Wang 20092), which had a mean value of 20.9. We did,
however, recover several ponds with effective population sizes higher than 44, which was the
maximum value recovered by Titus et al. (2014). These included pond H (Ne=91.0), pond K

(Ne=135.0), pond M (Ne=82.9), and pond O (Ne=68.8). This may indicate that the area around



these ponds, which was not directly sampled by Titus et al. (2014), may harbor greater effective
population sizes than elsewhere on Long Island.

A clear relationship between pond size and effective population size was recovered
(p=0.00122, R*=0.5619, Figure 12). This relationship has been previously observed in A.
californiense (Wang et al. 2011). Interestingly, the pond for which surface area did the worst job
predicting Ne, Pond H, had a much higher effective population size estimate than expected by
the model (that is, it had the largest residual from the regression line). Pond H is geographically
closest pond to Pond K, which has the largest effective population size estimate of any pond. The
landscape between Pond H and Pond K is largely forested with no major roads or other
anthropogenic barriers to gene flow, the Fst value between ponds H and K is the lowest of any
pairwise comparison between ponds (Fst=0.005, Table 6), and these ponds are consistently
recovered in the same cluster in ADMIXTURE analyses. Taken together, this suggests that
migration has been common between Pond H and Pond K, and that the effective population size
of Pond H is augmented by its close relationship with the very large Pond K.

Our approach afforded us the resolution to evaluate the contributions of human disturbance on
the movement of salamanders in the form of roads limiting dispersal between ponds. Based on
the y-intercepts of linear regressions, the presence of a major road between ponds raised Fst
values by approximately 0.04. Pond A was quite distinct from all the other ponds, as was Pond Q
(Table 6). These ponds are generally separated from other ponds by greater geographic distance,
but they are also separated from all other ponds by major roads. Similarly, ponds E and G tend to
separate from all other ponds (PC2 in Figure 9)—these are the only ponds besides pond A that
are north of New York State Route 25, a high-traffic road that constitutes a substantial barrier to

salamander movement. The combination of geographic distance and roads did an excellent job of



explaining the observed genetic distances between ponds (linear regression, adj. R*=0.6814).
These results suggest that both geographic distance and the presence of roads have affected
salamander dispersal for many generations, which has important implications for conservation
strategies.

Conclusion
The results of this study show that Ambystoma tigrinum ponds on Long Island generally have

relatively small effective population sizes that are correlated with the surface area of ponds, that
migration is limited among most ponds in the area, and that major roads further limit dispersal.
The interrelationships between these factors are important for conservation management. Small
effective population sizes imply that ponds are more likely to suffer random demographic
extinction, and highly structured populations indicate that locally extirpated ponds (such as those
that do not fill with water for many years in a row) may not be easily recolonized by individuals
from nearby ponds. Roads and other human activities add to these natural dynamics, and
emphasize the critical importance of conserving blocks of contiguous habitat with a complex of
ponds that can act as semi-isolated metapopulations. Within the Long Island landscape studied
here, there appear to be several clusters of interconnected ponds that periodically share migrants
(ponds B, C, and D; ponds H, I, J, K, L, and M; and ponds O and P). For such clusters migrants
from interconnected ponds may be expected to “rescue” nearby ponds that go locally extinct, and
maintaining these dynamics is probably critical to the long-term persistence of tiger salamanders
locally. However, the presence of major roads appears to disrupt this pattern, as seen by the
tendency of nearby ponds separated by major roads to fall out in different genetic clusters (such
as Pond A vs. ponds B, C, and D and Pond F vs. ponds E and G).

A genomic approach was critical for this experiment to detect the observed population

structure at such a fine spatial scale in a post-glacially recolonized area. The distinction between



inferences made from relatively few microsatellite loci from the data generated in this study have
important consequences for our understanding of ecological dynamics in the system. Titus e? al.
(2014) recovered little genetic structure among endangered populations of Long Island tiger
salamanders and inferred relatively high migration rates between ponds. Conversely, our
genomic approach revealed the restrictions in movement between many groups of ponds, despite
low overall levels of genetic differentiation.

This study suggests that monitoring of individual ponds is necessary, especially during and
following droughts. Our genetic results suggest that ponds not separated by major roads may
have increased resilience to local extirpation via demographic rescue from neighboring ponds, so
efforts should be made to prevent activities that separate such clusters of ponds. In the event of
an observed local extirpation of a pond, the genetic results herein provide information regarding
the best source of animals to use for translocations to preserve the current genetic landscape,
which is a result of a combination of current and historical patterns of dispersal among ponds.
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Tables

Table 4: Pond localities, areas, Watterson’s 0 estimates, sampling, and effective population size estimates. Pond areas
were estimated from Google Earth satellite images taken in March 2007. Single-year estimates were corrected for
iteroparity-induced downward bias as explained in Methods, and both single-year and pooled-year estimates were
corrected for dense locus sampling on chromosomes. Infinite values indicate that sample sizes were likely too small to
estimate Ne. N=number of samples included in analyses. Ne=Effective population size estimates using LD method.

Pond | Latitude Longitude | Pond Watterson’s | N Ne (2013/2014/2015)
Area (m?) | 0 (2013/2014/2015)

A 40.896379 | -72.892071 2147 3.26x10™ 37 (10/18/9) 11.6 (6.7/7.1/20.1)

B 40.891766 | -72.874854 6413 4.05x10™ 20 (0/10/10) 39.1 (NA/37.7/47.2)

C 40.889497 | -72.866932 1706 4.45x10™ 10 (0/0/10) 14.4 (NA/NA/14.4)

D 40.891043 | -72.863908 2039 4.38x10™ 9 (0/0/9) 27.3 (NA/NA/27.3)

E 40.915705 | -72.849554 2493 3.75x10™ 28 (10/9/9) 28.1(40.4/14.3/19.7)

F 40.908597 | -72.845109 2898 4.16x10™ 20 (10/0/10) 32.1(30.8/NA/31.3)

G 40.914317 | -72.842938 2094 421x10™ 10 (0/0/10) 16.9 (NA/NA/16.9)

H 40.912580 | -72.826168 1840 4.06x10™ 28 (10/10/8) 91.0 (55.5/187.2/515.2)

1 40.893704 | -72.823658 944 4.98x10™ 5(3/2/0) Inf (Inf/Inf/NA)

J 40.893182 | -72.823465 3418 3.94x10™ 30 (10/10/10) 27.2 (136.2/4.0/91.3)

K 40.906296 | -72.820671 10773 4.07x10™ 29 (10/8/11) 135.0 (602.1/Inf/27.4)

L 40.907237 | -72.787736 8587 5.77x10™ 1 (1/0/0) Inf (Inf/NA/NA)

M 40.913165 | -72.787206 7020 4.62x10™ 8 (0/8/0) 82.9 (NA/82.9/NA)

N 40.910430 | -72.779946 464 4.22x10™ 10 (10/0/0) 10.3 (10.3/NA/NA)

O 40.924112 | -72.780170 4710 4.36x10™ 15 (10/5/0) 68.8 (17689.4/Inf/NA)

P 40.913681 | -72.758595 4854 4.15x10™ 17 (10/0/7) 36.9 (Inf/NA/11.1)

Q 40.883585 | -72.708374 1302 4.08x10™ 5 (0/0/5) Inf (NA/NA/Inf)




Test Ru Ry p-value
Individual with log(geographic distance) | 0.5349 | 0.2861 1x10°
Individual with raw geographic distance | 0.4200 | 0.1764 1x10°
Ponds with log(geographic distance) 0.5276 | 0.2784 1x10°
Ponds with raw geographic distance 0.6305 | 0.3975 1.1x107

Table 5: Mantel test results: P-values calculated using 999,999 permutations. Ry is the Mantel R
statistic, and Ry is the square of the Mantel R statistic.
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Table 6: Pairwise Fst values between ponds. Cells are colored by the magnitude of difference between ponds, with red being relatively low differentiation and
green being relatively high differentiation. Bolded cells/values are not significantly different from 0 (p > Benjamini-Yekutieli-corrected 0.05).
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